Category: Education

On September 19-20 Norma and I attended the World Maker Faire at the New York Hall of Science. This extravaganza had so much to offer that two days were barely enough to scratch the surface. The Faire itself had everything from exhibits of new tools for makers to hands’-on areas where you could learn to solder, or build thngs of your own.



One of the many new products being demonstrated was the Kinderlab robotics system where kids can assemble computer

programs with wooden blocks whose bar codes were then scanned by a robotic platform that would then follow the instructions in the program. This project was one of several Kickstarter projects on display.

Based on our interests, we looked very closely at the 3D printing systems, along with some of the new CNC machines that cut elaborate shapes from blocks of wood, wax, plastic, or aluminum. On the 3D printer front, the M3D printer was

M3D Printer

M3D Printer

receiving a lot of attention. This under-$400 printer doesn’t have a very large print volume, but has some super features, including a special circuit that maintains alignment of the print head automatically. Many other 3D printers were on display but one of the ones getting a lot of attention was the new system being sold by Dremel. This is one of the first 3D printers with a well-known name behind it, and this device will be sold in places like Home Depot. When 3D rinters first started showing up for the hobby market, they required a lot of adjustment to keep them working well. In the following years, features (like self-leveling build plates) started to become more common. The fact that well-known brands are entering the market shows that this technolog is becoming mainstream. This doesn’t mean that smaller companies will go away, just that they will be held to high standards.

Dremel 3D Printer

Dremel 3D Printer

Of course, in this short posting, we can’t do justice to the Maker Faire. For example, two Italian exhibitors were showing

Chocolate iPhone Case

Chocolate iPhone Case

interesting devices, including a 3D printer using chocolate (in case you get hungry and want to eat your iPhone case). Another system from FABtotum in Milan combines a 3D printer, computer controlled milling machine, and high resolution scanner into one elegant box. Products like these help set the stage for the next Maker Faire!

MIT’s Mitch Resnick has said that Maker Faires are great staff development for educators. Our experience shows he is right.

Last week we conducted a workshop for educators on 3D printing in the Indianapolis public library.  They have a space that was perfect for working with twenty educators.  Several 3D printers were provided by 3D Parts Mfg., and Norma and I were the workshop leaders.

Indianapolis workshop

Indianapolis workshop

We started with a big challenge that put the participants in the deep end of the pool. (I’m not sharing the task since some of you may be in one of our upcoming workshops and I don’t want you to get a head-start!)  The point is that the participants saw cross-curricular connections to this activity.  This is important because teachers, in general, want to see how any new thing connects to the curriculum they are responible for.  One of the nice characteristics of 3D printing is that virtually any activity cuts across all the STEM subjects, and many can even be connected to other subject areas – including fine arts, history, and others. From our perspective, the critical element was having the participants see themselves as designers.  Toward that end, we made sure they had access to several 3D design tools rather than just focusing on a single tool like Tinkercad, for example.  The fact is that some kinds of designs are easier in some tools than in others, and the more choices teachers and students have, the more likely they will be to create incredible designs. Some teachers felt that recipes for projects were appropriate, and they did projects from our book The Invent to Learn Guide to 3D Printing in the Classroom, since these projects are already in recipe form. We had plenty of assistance from Kim Brand and his colleagues at 3D Parts Mfg.  They provided the printers we used, and handled all the logistics so all Norma and I had to do was show up with our handput packages for everyone. Since that workshop we have been contacted to conduct more workshops around the country.  The 3D printing revolution is ready for prime time!

Our upcoming workshop explores many things, including how to extrude two-dimensional graphics created with TurtleArt into three-dimensional shapes that can bed for many things – including pressing patterns into clay for decorative tiles.  The original idea for this project came from a great blog by Josh Burker (

The following Animoto video shows a project done (with some help from us) by our 7-year-old Granddaughter, Bianca.

She will be coming to our 3D Printing in Education workshop in Indianapolis later this week.  From fine arts to STEM education, 3D printing is a powerful tool!


I have two 3D printers already, and am familar with several others that look interesting.  In my quest to stay on top of this dynamic field, a few weeks ago I got a da Vinci 1.0 3D printer from Studica (,  a company whose focus is on hardware and software products for education.  Studica sells a complete line of 3D printers, but the one that caught my attention was the da Vinci.  This machine retails for $499, which is staggeringly low when you look at the system.  First, it has a very large print volume – 20cm by 20cm by 20cm.  This makes it one of the largest print beds in the under $2,000 printer category.  The ABS filament is provided in nicely designed cartridges that don’t cost an arm and a leg.  The overall look of the printer is quite elegant.  The transparent case lets you see everything as it is printing (especially if you turn on the interior light.)  A built-in display lets you do a lot of tasks (such as loading or changing filament) without having a computer attached.

img_davinciThis printer uses a glass print bed that you coat with a thin layer of glue from a regular glue stick.  The advantage of this adhesive method is that you don’t generally need to print using a “raft” – a layer of plastic put down by the nozzle  before the parts are printed.  Another nice touch is that the print nozzle is automatically cleaned after printing and any extra filament strands are placed in a box that can be removed later to get rid of scraps.  The internal hardware looks very well designed.  In fact, just looking inside this machine made me think I was looking at a very high end printer!

As with any 3D printer, it is essential to be sure the print bed is calibrated properly, otherwise the parts will look awful.  The da Vinci printer is calibrated at the factory, but, in shipping, the calibration screws may get jarred from their optimal positions.   Fortunately, this is easy to fix, and the technical support team sent me a link to a short video to show, step by step, how to align the print bed.  The print head has a special electrode on it that is brought into contact with the build plate hardware at three locations.  The built-in display then lets you know what adjustments are needed, or, if it is in the range of automatic alignment, to accept the new settings.  In my experience, this task only needs to be done once.

da vinci softwareAs for printing, you simply connect the printer to your computer using a USB port and run the supplied software.  From this program you load a file you’ve created or downloaded in the form of an STL file – the format most often used on 3D printers.  Once you press the Print button, the print bed is heated to about 100C while your object model is sliced into layers so the part can be built layer by layer.  Once printing has started, the built-in display lets you know how long the print job will take.  If you want, you can disconnect your computer from the printer at this point so it can be used for other things (like designing more things to print!)

Once the printer is finished with a job, the bed is cooled down and moved to the bottom to make it easy to remove your design.  The manufacturer provides a plastic scraper to separate the part from the bottom of the build plate.  My experience is that, once the part has cooled down, the plastic contracts just a bit, and it is easy to snap the part from the plate, leaving a very smooth finish on the bottom, and the build plate ready to be cleaned and coated with a new thin glue layer.

As for print quality, the parts are not quite as nicely finished as those I make on my Afinia printer, but for most school projects it is pretty good.  The downside is that this printer takes a lot of time to print projects.  In a school setting, time is important; but the large build plate might let you print several student projects at a time, making this less of an issue.

Overall, I rate the industrial design very high.  The price is unbelievably low.  Technical support is wonderful.  The only downsides when compared with more expensive printers is the print time and slightly reduced print quality.  Taking everything into consideration, the da Vinci 1.0 is a good buy for those wanting to get involved in 3D printing.  Later, some may choose to scale up to more expensive printers with higher print quality and faster speed, but, even then, this printer will get a lot of use!


My friend, Peter Skillen (, coined a term I really like – “Tinkering-Based Learning” (TBL.)  While this kind of learning can take place within the broader context of Project-Based Learning, it differs in that the student learns by tinkering with ideas in the quest to build something.  In terms of Seymour Papert’s ideas, this would be called Constructionist (as opposed to Constructivist) learning.  It also accurately represents what a lot of engineering design is about – tinkering with ideas, trying things out, and repeating the process until you get the resulting design you are looking for.  I once heard an engineer from Rolls Royce jet engine division say that it takes about 20 tries to get a design right.  Very clearly this is not what most classroom practice looks like.

ImageMy interest in this topic was rewarded last week when we attended part of a week-long summer camp on 3D printing designed by Kim Brand and his colleagues at 3D Parts Manufacturing (  This camp, in Indianapolis, Indiana, had about a dozen boys and girls ranging from grade 6 to 11 who were enticed by the idea that they could build objects of their own design.

On the software side of things, most students used cloud-based tools like Tinkercad and 123D Design, although there are many rich software titles from which to choose.  In fact, our list of favorite titles is shown in an earlier blog.  Students were encouraged to design and build something that was practical, and to also design something that was playful.  It was great to see the intensity with which the kids worked, and how willing they were to help each other out if someone got stuck.  There was no formal instruction on the use of the software beyond letting them know that when their project was finished it needed to be exported as an STL file so it could be printed.

ImageTwo printers were provided by Kim Brand – his “STEAM engines” (Science, Technology, Engineering, Art, Mathematics.)  These printers operate at a sufficiently rapid speed that many students were able to get their projects printed right away.  Projects submitted on the last day were printed and sent to the students later.

From our standpoint, the enthusiasm of the kids was amazing to see.  They were working on their projects non-stop, driven by nothing more than the desire to design and build their own creations.

The summer camp model makes a lot of sense because you can have kids work together all day long for five days – plenty of time to do some amazing work.  But this doesn’t mean that TBL doesn’t have a home in ordinary classrooms.  The challenge is for teachers to create opportunities for kids to solve real problems.  A single problem may take several class periods to finish (although a few of the students worked on their designs from home in the evening.)  The point is that TBL does not have to be devoid of structure.  In fact, the more meaningful the problem, the more powerful the activity.

An example we have used with students is potentially quite important in the future.  Imagine a trip to Mars – the likelihood is that the ship will not have every conceivable spare part, but will have a 3D printer of the kind made by Made in Space scheduled to go to the ISS this year (   Imagine that the outer wall of the craft is hit by space debris, creating an ugly hole through which air is leaking out of the ship.  The challenge is to design and build a plug that stops the leak.  This design can be done with free software (like Sketchup Make) and, once each team compares designs with others, a final design can be made, printed, and installed, this saving the mission.

ImageOf course, this is just one of myriad challenges you can imagine, each of which can be correlated with your school’s math and science standards.

But the coolest thing of all to imagine is how we can bring the real power of TBL into classrooms throughout the world!


As I returned from the MakerFaire in San Mateo, California a few weeks ago, I was amazed at how this movement had grown to attract 150,000 people to one place for a weekend of “the greatest show and tell on earth. ” With all this enthusiasm, one can be forgiven for thinking that this is a new movement when, in fact, it has roots running back quite a few years. A quick search on Google Trends shows nothing before 2007, but this is simply not true.

After writing earlier books on Logo for the MSX computers in the 1980’s, the Brazilian educational leader, Norma Godoy, decided , in 1992, to raise the bar on student programming by incorporating robotics into her currculum. Rather than just connect Logo to simple floor “turtles” that would move along based on Logo commands, she thought that the world of robotics was completely open, and that students should be allowed to build and program anything they wanted. Now before you say “Lego Mindstorms,” you need to know that product didn’t become available until 1998. And even if it had been available in Brazil, the high cost of Lego bricks meant that, once a project was completed, it had to be taken apart so others could use the bricks in their own designs.

predioRather than work with scarce and expensive materials, Norma decided to build her program around recycled materials – plastic soda bottles, cardboard, and other easily found items which were then assembled into projects containing motors and lights so they could be programmed by the student’s computer. This required a hardware interface to control these motors and lights. The interface she inspired engineers, (one at ORT and one at ARS Consult both in Brazil) to create, was connected to the parallel port (remember those?) of the computer with signals then sent to various outputs.

Since cheap LEDs were not available at the time, small bulbs from Christmas lights were used. The most expensive parts were the stepper motors taken from dead hard drives, or purchased for a few dollars.

Armed with this arsenal of tools, the key element was the creativity of the students who built amazing things. For example, one ROB1student built a model of a garage door opener that worked by flashing the car lights into a photosensor that then told the Logo program to open the door. The garage itself was made from a cardboard box, and a jar lid was used at the pivot for the door to open.

One can only imagine what students would do today with inexpensive 3D printers being used to make custom gears and other parts that are hard to make from recycled materials!

At one time, many thousands of students were using these materials throughout Brazil. and Norma started presenting her work at international conferences, such as the 1997 CUE conference in California. One of the teachers Norma taught led a team of students into the prize winning round of the First Robotics competition a few years ago.

Now that companies are entering the educational robotics arena with kits that take advantage of recyced matrials, it is important to reflect on this rich history today. It is interesting to see the attention these new comanies get at educational conferences from teachers, some of whom were in school themselves when this robotics movement was started.

When we look at these products, it gives us a chance to reflect on how student robotics is far from a new idea!

In the spirit of full disclusre, Norma Godoy has been known as Norma Thornburg since 2000 and she and I are actively engaged in everything from 3D printing in the classroom and soft circuits.

As 3D printers come into homes and schools, you will be looking for tools that let you make your own designs.  Here are a few free titles that I think should be on your list:

Inkscape is primarily a drawing program for two-dimensional designs. It is an amazingly powerful tool that even automates the process of drawing complex objects like gears.  Drawings created in Inkscape can be saved in the SVG (scalable vector graphic) format so they look great at any magnification.  You can also export images in traditional graphics formats like PNG (portable network graphic) that looks great when used on websites, etc. But the real power of Inkscape as a 3D drawing tool comes when you install the support plug-in for 3D extrusion to an OpenSCAD file (described later)  that can be rendered and exported as an STL file for the printer to use.  The way this works is that you select the part of the drawing you want to extrude into a three-dimensional shape.  When you choose the extrusion option, you just indicate how many millimeters you want the extrusion to be, and a 3D file for OpenSCAD is generated automatically.  To get this shape to your printer, the next step is to open it in OpenSCAD, compile the image, and save it as an STL file.  STL (Stereolithography) files are the format your printer expects to see when it starts the process of getting your model ready to print. This sounds laborious, but it is easy to get the hang of it, and the whole process goes very quickly.

You may be wondering why I would mention a (primarily) two-dimensional drawing tool in the context of 3D printing.  The reason is that, while building 3D objects on the computer screen is likely a new task to students, they probably use two-dimensional art programs all the time.  Our goal is to build from this strength on the path to (later) creating designs with 3D drawing tools.

While I will largely use OpenSCAD as an extrusion tool for Inkscape, it is, in fact, a full 3D modeling program that builds models from text commands.  It has its own programming language that might be appropriate for high-schoolers to play with.  An advantage of building geometric models in OpenSCAD is that they can be “parameterized” – expressed in a way that lets one design make several related shapes by changing the values of a few variables.  For example, a propeller can be designed in OpenSCAD in a way that lets the end user change the number and size of the blades.  This is a real feature, and quite a few Thingiverse models include OpenSCAD files for just that reason.  Used in this way, students can tinker with existing models to create a custom part for their construction.  The final model is displayed on the screen to be sure it is what you want before saving it as an STL file.

Sketchup is a professional 3D modeling tool that is super for creating geometric structures from scratch (architectural designs, for example).  The free version (Sketchup Make) has all the features that students might need to build models of the parts they want to print.  If your model can be built from boxes, cylinders, and balls, it is a great tool.  It is not what I would choose for more organic shapes, though.  The Sketchup Extension Warehouse has a free plug-in that lets you export your finished part as an STL file directly.  My only caution about this tool is that it is not the best program for editing completed STL files.  They show up as a mass of dots and triangles, and I haven’t found a way to render the surfaces as nicely as you can from models made in Sketchup in the first place.  This is a shame, because older versions of Sketchup handled imported STL files much better.  The good news is that there are many other alternatives for you to use.

This program also lets you create projects from scratch using a library of geometric shapes.  My experience is that it is easier to align parts in 3DTin than it is in Tinkercad (another cloud-based design tool).  3DTin lets you download your drawing as an STL file ready to print!

Autodesk is one of the premiere publishers on computer-aided design software.  Their products are found in design firms and architects offices all over the world.

They decided to support the beginning 3D designer with a rich suite of tools that covers the gamut from parts designed from geometric pieces, to the more organic designs suitable for modeling living organisms.  In fact, Clark Barnett, a teacher in  the Conejo Valley Unified School District  in California does a project with his kids using one of the Autodesk applications on the iPad – 123D Creature.  With this tool, students design their own insects that could live in the ecosystem of their classroom.  Once printed, these “insects” are mounted in a display tray and students explain why their insect is likely to survive on its own in the classroom ecosystem.

While not geared specifically for “creature” creation, Autodesk has a wonderful free product called Meshmixer that is perfect for creating organic, rather than geometric shapes.

This tool lets you sculpt by hand as if you were working with clay.  Anyone who has worked with modeling clay will know how to use the tools in this program, and there is a great manual to show exactly how to get the most from this program.  Tools like this bring 3D printing into the life sciences classroom.

This amazing tool is a great next step for Meshmixer users.  It was designed for sculptors (and would-be sculptors), instead of a blank screen you are presented with a round ball of “clay” that can be shaped into just about anything you want.  While not geared toward the creation of geometric objects, it is a perfect tool for building models of various creatures – both real and imagined.  Finished projects are exported as OBJ files that can be easily converted to STL files by Meshlab (see below).  Once you start working with this tool, hours happily go by as you build amazing things, all of which can be built on your 3D printer.  This software comes with good documentation and links to some video tutorials I highly recommend for anyone interested in this tool.

This program lets you build mathematical knots of all kinds.  While created for math geeks, knots are pretty to look at, and students can use this program to explore this branch of mathematics – a worthwhile activity in itself.  One great feature of this program is that it lets you export your finished knot as an OBJ file if you want to tweak it in Meshlab (see below).  You can also export your image as an STL file directly and send it to your printer software with no further work required.  Finished knots can be sent out for metal plating in case you want to make your own jewelry. (You probably have some service providers in your area that will do this inexpensively.)

Other tools:

Sometimes (as with Sculptris) your 3D images will be exported as OBJ files that need to be converted to STL files so they can be printed.  Meshlab does this job beautifully and even lets you adjust the mesh from which the model is defined to optimize it for printing.  This optimization process lets you clean up your model so it will print perfectly.

This is the plug-in you need to allow Inkscape to create extrusions for OpenSCAD.  All the instructions are provided in the web link shown above.

And there are more good programs coming out all the time, so keep your eyes open and let us know what you find (!

The Trinity Fractal

The story behind this discovery dates back to the 1970’s when I used to volunteer as a math resource specialist at a small school near my office.  One day, a teacher introduced me to a 10 year-old girl (we will call her “Ann”) who was (in the teacher’s  words) “bad at math.”  I found that to be  strange announcement since, in my view, Ann had never been exposed to math, but only to arithmetic.  So one day I invited my class to do an experiment.  

I brought my own bucket of pattern blocks to school, in which I added some regular pentagons I had made.  Piles of the same shapes were put on several desks, and students were asked to tile the surface with just one shape – and I made sure Ann was at the table with the regular pentagons.  After a few minutes, all the students had succeeded – excepting those at the table with the pentagons.  No matter how hard they tried, there was always going to be a gap.

Ann said, “Well, we can do it, but we are going to need a lot of grout.”  And, after looking at the other tables, she said, “This is a strange kind of math – 3 works, 4 works, and 6 works, but 5 doesn’t work.  Why is that?”

I was delighted to hear that question because this is the kind of question mathematicians ask themselves often.  Ann told me she wanted to experiment more with the pentagons, and I gave her a bunch to take home so she could report her findings the next week when we met again.  At this point I didn’t know what to expect, but it sure wasn’t what she showed up with.

The next week, she started off with the following pattern:

Starting pattern

Ann pointed out that this shape, while not a tiling pattern, looked like a pentagon if you “squished” your eyes a little bit.  “So,” she said, “suppose we start with this pattern, shrink it in size and build a new pattern with the same shape.”

First generation pattern

Then, she said, just keep repeating this process.  You will always need some grout, but the picture should be very pretty.

The next two generations of patterns are shown below:

Second generation

Third generation

As you can see, Ann was quite right.  Yes, you still need grout, and, the resulting pattern is quite pretty.

Basically, what Ann had discovered (and accurately described) is a fractal – a shape with a non-integer dimension.  I’ve told Ann’s story many times, but never before constructed the fractal patterns to show people.  I decided to call this the Trinity fractal, named after the school where I volunteered (Trinity Parish School in Menlo Park, California.)

I lost touch with Ann, but talked with her on her first day of college at UC Berkeley, where she was majoring in mathematics.

I’m glad I may have played a small role in helping her see the beauty in this subject, and have no doubt that she has gone on to do great things.

I’m also happy to finally share her discovery with others in the hope that it encourages other teachers to move beyond arithmetic to see the beauty in real mathematics, as encouraged by the Common Core State Standards for mathematics.  Our workshops on CCSS Math can be scheduled by e-mailing me at  Also, our work with pentagon tiling has continued in a new way.  See to see what we’re doing in this area!

Before getting into the content of this blog, I want to ask the flame brigade to hold off until they get to the end of the message.  This blog is not anti-iOS, not anti-Android, not anti-tablet.  It is simply my view of how things seem to be turning out.  So here goes:

Schools around the world have diven into the deep end of the tablet pool, purchasing these devices by the thousands (or more) in the quest to bring powerful technology into the hands of students.  The reasoning behind tablets is that they are rugged, have amazing battery life, and provide access to various apps that may be of value in the classroom.

This last point has been a sticking issue for some.  I’ve argued for decades that the choice of a computer platform for kids needs to be driven by the software they will use, and this message has been lost on some districts who chose the platform first, and then tried to figure out how best to use it.  As with the Apple vs. Microsoft battles of the past, the fight quickly broke down into two camps – the iOS folks (iPads) and the Android enthusiasts.  While some have found ways to use these tools in remarkably powerful ways, the question arises: should we have been looking at tablets at all?

In a 2012 piece in THE Journal (, Therese Mageau argued that the race to buy iPads (for example) largely came without thinking about the deeper educational shifts implied by every child having his or her own connected device.  While she is correct, I’d like to take a different approach to the question – to ask if tablets were the right choice at all!

While the world was focused on iPads and the like, Google announced the Chromebook at their developer’s conference in May, 2011.  Like tablets, Chromebooks have long battery life (8 hours or more), virtually no boot time (8 seconds from a cold start), a low price (under $300) and the ability to run some applications (word processing, spreadsheet, presentation tools, watch videos, etc.) without Internet access – although this tool was designed to be used when you are online.

While some schools started to adopt Chromebooks, many did not, even though the Chromebook looks like a thin laptop with a full keyboard and high quality display.  But, once again, the question arises on the application front.

Google has done a wonderful job of helping developers create apps for the Chrome Web Store ( and amazingly powerful educational apps abound – a great many of which are free!  For example, you can get Geogebra, the Scratch programming language, even all fifty of our own Knights of Knowledge inquiry-starter videos that span grade levels and subject areas.  The list of educational apps is growing daily, along with the adoption of this tool as the one-to-one device of choice for many.

And this brings us back to tablets – or more particularly to the schools and districts who purchased so many of these devices for student use. Given what we now know, would different purchasing decisions be made?  As the pundits say, hindsight is always 20-20.

The fact is that the Chromebook emerged as a wild card in a field that never seems to stop and catch its breath.  Does this relegate tablets to the storage closets?  Of course not.  It merely suggests that we need to base our purchasing decisions on the best information we have at the time.  And, make no mistake about it, there will be something someday that eclipses the Chromebook.  This just reinforces the importance of ensuring that whatever purchase we make is based on the actually utility of the device to kids in support of their learning.  As long as we do that, we are on solid ground.

Earlier this month I got a Samsung Chromebook because many of the schools we work with have adopted them in their one-to-one programs.  I just admit that I had some misperceptions that kept me off the Chromebook wagon for over a year, but now I think I can use it as my primary road-tool for giving presentations, creating documents (such as this blog) and doing other things (but not all things) I used to use my laptop for.

My original thinking was that this could be a very cool device.  From a historical point, it all started in 1984 when Sun’s John Gage said: “The network is the computer.”  When he said this many computers (including the brand new Macintosh) came without a modem or ethernet port – so this was a very bold statement.  About a decade later, when the first graphical web browser (Mosaic) was released, I said: “The browser is the operating system” and, just two years ago the Chromebook hit the market.  This ultralight laptop replacement uses the Chrome browser interface for all applications.  The browser is built on a Linux base (just like iOS, MacOS, and Android) thus leaving Microsoft out in the cold.

Because of the browser interface, I assumed (incorrectly) that all applications needed to be used when you were online.  This is not true.  Once you register with your Gmail account, you are able to create documents (such as this one) along with slideshows even if you have no internet connection at the time.  Once you go online, all your new documents and edits get synchronized to the cloud automatically.  This a great for kids who may only have good internet access from school.  They can still work on projects at home even though they are disconnected.

The automatic update feature applies to more than documents.  Applications reside in the cloud (unless you are running local versions on the Chromebook) so upgrades are automatic.  The Chrome operating system is virus proof.  If you completely mess up your system (hard to do), you can do a fresh restart and everything you were doing gets automatically put back in place as soon as you log in.  This means that if your Chromebook gets run over by a truck, you can turn on a fresh one, log in, and keeps working as if nothing happened.  Start-time (from cold start) is about eight seconds.  If you have the Chromebook sleeping, it wakes up immediately.

There are a few changes that need to be made.  Some of the applications (e.g., Geogebra) do not have all the features of the laptop version, and there seems to be a bug in the current release of ChromeOS that makes it hard to rename files in GoogleDrive.

Of course GoogleDocs is the home for word processing and other traditional mainstream applications.  Finished documents can be exported to a wide range of formats (.docx, for example) so you can share your work with others in the format they prefer.

As I continue to use this new device, I will post more insights on this blog.  In the meantime, if you want a reliable device with long battery life (I get over 8 hours) for the bulk of what you do that is web-based (and local to your machine when it is nowhere near the Internet), this can be a very good $250 investment.



Get every new post delivered to your Inbox.

Join 1,563 other followers